3164 independent reflections

 $R_{\rm int} = 0.055$

2291 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-3-(2-Chloro-3-quinolyl)-1-phenyl-2,3-epoxypropan-1-one

Raouf Boulcina,^a Sofiane Bouacida,^b* Thierry Roisnel^c and Abdelmadjid Debache^a

^aLaboratoire des Produits Naturels, d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, ^bDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béjaia, Route Targua Ouzmour 06000 Béjaia, Algeria, and ^cCentre de difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes L 263 Avenue du général Leclerc 35042 Rennes France Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 24 July 2007; accepted 8 August 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.109; data-to-parameter ratio = 15.4.

In the title molecule, C₁₈H₁₂ClNO₂, a quinolyl moiety is linked to a functionalized epoxide system in a trans configuration. The epoxide ring forms dihedral angles of 62.27(2) and 79.82 (2)° with the 2-chloropyridine ring of the 2-chloroquinolyl group and the phenyl ring, respectively. The mean plane of the atoms of the quinolyl ring system forms a dihedral angle of $35.03 (1)^{\circ}$ with the phenyl ring. The crystal structure can be described as layers in which epoxide rings lie parallel to the (101) plane. The packing is stabilized by weak $C-H \cdots O$ and $C-H \cdots N$ intra- and intermolecular hydrogen bonds, resulting in the formation of a three-dimensional network.

Related literature

For related literature regarding synthetic procedures, see: Kidwai et al. (1996); Adam et al. (2001); De Vos et al. (1998). For applications, see: Ibrahim et al. (1991); Srivastava et al. (1991); Moiseer et al. (1988). For other related literature, see: Kedjadja et al. (2004); Lennette (1964); Maryanoff et al. (1994); Menasra et al. (2005); Moussaoui et al. (2002); Pearson & Ong (1981); Rezig et al. (2000); Rivers & Horsfall (1959); Sidwell & Hofmann (1971).

Experimental

Crystal data

$C_{18}H_{12}CINO_2$	V = 1413.4 (5) Å ³
$M_r = 309.74$	Z = 4
Monoclinic, $P2_1/a$	Mo Ka radiation
a = 11.0782 (19) Å	$\mu = 0.28 \text{ mm}^{-1}$
b = 9.6177 (19) Å	T = 295 (2) K
c = 13.352 (3) Å	$0.15 \times 0.11 \times 0.06 \; \mathrm{mm}$
$\beta = 96.511 \ (9)^{\circ}$	

Data collection

Bruker APEXII diffractometer Absorption correction: none 9724 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 205 parameters $wR(F^2) = 0.109$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.27$ e Å⁻³ 3164 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C4-H4···O2	0.93	2.56	2.884 (3)	101
$C11 - H11 \cdot \cdot \cdot N1^{1}$	0.98	2.56	3.510 (3)	164
C15−H15···O1 ⁱⁱ	0.93	2.58	3.494 (3)	170

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work is supported by Mentouri-Constantine University, Algeria.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2468).

References

- Adam, W., Saha-Moller, C. R. & Ganeshpure, P. A. (2001). Chem. Rev. 101, 3499-3548.
- Brandenburg, K. & Berndt, M. (2001). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.
- Bruker (2003). APEX2 (Version 1.0-5) and SAINT (Version 6.25). Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- De Vos, D. E., Sels, B. F., Reynaers, M., Rao, Y. V. S. & Jacobs, P. A. (1998). Tetrahedron Lett. 39, 3221-3224.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ibrahim, A., Rahman, A., Abdu, E. & Etify, E. (1991). Collect. Czech. Chem. Commun. 56, 1749-1760.
- Kedjadja, A., Moussaoui, F., Debache, A., Rhouati, S. & Belfaitah, A. (2004). J. Soc. Alger. Chim. 14, 225-233.
- Kidwai, M., Goel, Y. & Srivastava, K. C. (1996). Bioorg. Med. Chem. Lett. 6, 871-874.

- Lennette, E. H. (1964). *Diagnostic Procedures for Viral and Rickettsial Diseases*, edited by N. J. Schmidt, 3rd ed., pp. 78–176. New York: The American Public Health Association Inc.
- Maryanoff, C. A., Sorgi, K. L. & Zientek, A. M. (1994). J. Org. Chem. 59, 237–239.
- Menasra, H., Kedjadja, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun. 35, 2779–2788.
- Moiseer, I. K., Zemtsova, M. N., Trakhtenberg, P. L., Kulikora, D. A., Skobkina, I. P., Nosdehadim, G. N. & Ostapehuk, N. V. (1988). *Khim. Form. Zh.* 22, 1448–1451.
- Moussaoui, F., Belfaitah, A., Debache, A. & Rhouati, S. (2002). J. Soc. Alger. Chem. 12, 71–78.
- Pearson, A. J. & Ong, C. W. (1981). J. Am. Chem. Soc. 103, 6686-6690.

Rezig, R., Chebah, M., Rhouati, S., Ducki, S. & Lawrence, N. (2000). J. Soc. Alger. Chim. 12, 111–120.

Rivers, T. M. & Horsfall, E. L. (1959). Viral and Rickettsial Infections of Man, edited by J. B. Lippin, 3rd ed., pp. 903–909. Montreal: J. B. Lippin.

- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sidwell, R. W. & Hofmann, J. H. (1971). Appl. Microbiol. 22, 791–796.
- Srivastava, R. P., Sudhir, K. S. & Sharma, S. S. (1991). *Indian J. Chem. Sect. B*, **30**, 859.

Acta Cryst. (2007). E63, o3795-o3796 [doi:10.1107/S1600536807039335]

trans-3-(2-Chloro-3-quinolyl)-1-phenyl-2,3-epoxypropan-1-one

R. Boulcina, S. Bouacida, T. Roisnel and A. Debache

Comment

Quinolines have been extensively investigated by organic chemsits due to their association with biological activities like antibacterial (Ibrahim et al., 1991), antifungal (Moiseer et al., 1988) and antifilarial (Srivastava et al., 1991) activities. In addition, naturally occurring epoxides are associated with various industrial, mechanistic and biological activities (Pearson & Ong, 1981). New and less toxic antiviral agents are in great demand due to typical viral infections (Kidwai et al., 1996). We thought it worthwhile to synthesize new quinoline substituted epoxides and screen them for their antiviral activity against EMC virus (Rivers & Horsfall, 1959). The antiviral activity of guinoline substituted epoxides were tested against Encephalomyocarditis Virus (EMCV) (Lennette, 1964) and cytotoxic assays of these compounds were also evaluated (Sidwell & Hofmann, 1971). As a result of their importance in synthesis, the preparation of epoxides has been of a considerable interest and many methods have been developed to date. An alternative and complementary approach utilizes aldehydes. The advantage of this approach is that potentially hazardous oxidizing agents are not required. Epoxides bearing electronwithdrawing groups are very important synthetic intermediates because of their rich and useful functionality (Adam et al., 2001; De Vos et al., 1998). These compounds have been most commonly synthesized by the Darzens reaction (Maryanoff et al., 1994). This involves the initial addition of an α -halo enolate to a carbonyl compound, followed by ring-closure of the resulting alkoxide. In continuation of our research program directed towards the preparation of new quinoline derivatives (Menasra et al., 2005; Moussaoui et al., 2002; Rezig et al., 2000; Kedjadja et al., 2004), we present here our results concerning the epoxidation of 2-chloro-3-formylquinoline.

In this study, we have synthesized *trans*-2,3-epoxy-3-(2'-chloroquinolyl)-1-phenylpropan-1-one and determined its crystal structure.

The molecular geometry and the atom-numbering scheme are shown in Fig. 1. The title molecule contains an epoxide group linked to a chloroquinolyl moiety and benzoyl group with 2, 3-*trans* configuration relationship.

The two rings of quinolyl group form a dihedral angle of $1.22 (1)^{\circ}$ between them. The epoxide ring forms dihedral angles of 62.27 (2)° and 79.82 (2)° with the 2-chloropyridine ring of the 2-chloroquinolyl group and phenyl rings respectively. The mean plane of the atoms of the quinolyl ring fused rings system forms a dihedral angle of 35.03 (1)° with phenyl ring. The crystal structure can be described as layers in which the epoxide rings are parallel to (10–1) plane (Fig. 2).

The crystal packing is stabilized by C-H···O and C-H···N intra and intermolecular hydrogen bonds, resulting in the formation of three dimensional network (Fig. 3).

Experimental

To a solution of 2-chloro-3-formylquinoline (1 mmol) in toluene (15 mL) was added 1 mmol of 2-bromoacetophenone, and the mixture was cooled to 273 K. An aqueous solution of KOH 30% (2.5 ml) was added dropwise over a period of 2 minutes. This mixture was stired for 24 h at room temperature. The reaction was worked up by adding 15 ml of cold water

and 15 ml of saturated aqueous ammonium chloride. This solution was extracted twice with methylene chloride (25 ml) and the combined organic layers were washed twice with cold water (10 ml), saturated aqueous ammonium chloride (10 ml) and dried over MgSO₄ then concentrated *in vacuo*. The obtained residue was purified by a column chromatograpy (SiO₂, methylene chloride) to furnish the pure product.

Refinement

All H atoms were located in Fourier maps but introduced in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

Fig. 2. The layered crystal packing of the title compound viewed down the b axis.

Fig. 3. The crystal packing, viewed down the *a* axis. Hydrogen bonds are shown as dashed lines.

trans-3-(2-Chloro-3-quinolyl)-1-phenyl-2,3-epoxypropan-1-one

Crystal data	
C ₁₈ H ₁₂ ClNO ₂	$F_{000} = 640$
$M_r = 309.74$	$D_{\rm x} = 1.456 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/a$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yab	Cell parameters from 1765 reflections
a = 11.0782 (19) Å	$\theta = 2.6 - 25.5^{\circ}$
b = 9.6177 (19) Å	$\mu = 0.28 \text{ mm}^{-1}$
c = 13.352 (3) Å	T = 295 (2) K
$\beta = 96.511 \ (9)^{\circ}$	Needle, white
$V = 1413.4 (5) \text{ Å}^3$	$0.15\times0.11\times0.06~mm$
Z = 4	

Data collection

Bruker APEXII diffractometer	$\theta_{\text{max}} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.6^{\circ}$
T = 295(2) K	$h = -14 \rightarrow 13$
CCD rotation images, thin slices, ϕ scans, and ω scans	$k = -12 \rightarrow 12$
Absorption correction: none	$l = -16 \rightarrow 17$
9724 measured reflections	Standard reflections: ?;
3164 independent reflections	every ? reflections
2291 reflections with $I > 2\sigma(I)$	intensity decay: ?
$R_{\rm int} = 0.055$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_0^2) + (0.0448P)^2 + 0.3701P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.109$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
3164 reflections	$\Delta \rho_{\text{min}} = -0.27 \text{ e } \text{\AA}^{-3}$
205 parameters	Extinction correction: SHELXL
Primary atom site location: structure-invariant direct methods	Extinction coefficient:

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.44660 (5)	0.15265 (5)	0.36554 (4)	0.0236 (2)
01	0.04229 (14)	0.17899 (15)	0.13407 (12)	0.0278 (5)
O2	0.16982 (13)	0.41881 (14)	0.19793 (12)	0.0265 (5)
N1	0.56767 (15)	0.38265 (16)	0.39598 (13)	0.0185 (5)

C2	0.46357 (19)	0.33260 (18)	0.35826 (15)	0.0179 (6)
C3	0.36441 (18)	0.41018 (19)	0.30987 (15)	0.0176 (6)
C4	0.38174 (18)	0.55056 (19)	0.30233 (15)	0.0181 (6)
C5	0.49167 (18)	0.61229 (19)	0.34310 (15)	0.0170 (6)
C6	0.51367 (19)	0.7576 (2)	0.34001 (16)	0.0202 (6)
C7	0.6217 (2)	0.8103 (2)	0.38244 (16)	0.0224 (7)
C8	0.71302 (19)	0.7227 (2)	0.42894 (16)	0.0218 (7)
C9	0.69491 (18)	0.5820 (2)	0.43224 (16)	0.0200 (6)
C10	0.58343 (18)	0.52412 (19)	0.39002 (15)	0.0176 (6)
C11	0.24984 (18)	0.3409 (2)	0.26948 (16)	0.0200 (6)
C12	0.22971 (19)	0.3004 (2)	0.16239 (16)	0.0204 (7)
C13	0.15213 (19)	0.1740 (2)	0.13606 (16)	0.0204 (7)
C14	0.21784 (19)	0.0425 (2)	0.11805 (16)	0.0201 (6)
C15	0.34163 (19)	0.0396 (2)	0.10980 (16)	0.0243 (7)
C16	0.3989 (2)	-0.0854 (2)	0.09571 (18)	0.0284 (7)
C17	0.3340 (2)	-0.2086 (2)	0.09239 (16)	0.0266 (7)
C18	0.2115 (2)	-0.2074 (2)	0.10231 (18)	0.0315 (8)
C19	0.1532 (2)	-0.0821 (2)	0.11422 (18)	0.0280 (7)
H4	0.32027	0.60569	0.26996	0.0217*
H6	0.45435	0.81675	0.30903	0.0242*
H7	0.63515	0.90568	0.38061	0.0269*
H8	0.78615	0.76057	0.45762	0.0262*
Н9	0.75609	0.52450	0.46231	0.0239*
H11	0.21102	0.28255	0.31677	0.0240*
H12	0.29615	0.31800	0.12147	0.0244*
H15	0.38607	0.12183	0.11377	0.0292*
H16	0.48134	-0.08671	0.08842	0.0340*
H17	0.37322	-0.29249	0.08344	0.0320*
H18	0.16824	-0.29038	0.10102	0.0378*
H19	0.07030	-0.08110	0.11969	0.0337*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0245 (3)	0.0128 (2)	0.0340 (3)	-0.0001 (2)	0.0056 (2)	0.0010 (2)
O1	0.0169 (9)	0.0316 (9)	0.0350 (10)	-0.0018 (6)	0.0039 (7)	-0.0073 (7)
O2	0.0214 (9)	0.0200 (7)	0.0366 (9)	0.0046 (6)	-0.0028 (7)	-0.0039 (6)
N1	0.0185 (9)	0.0161 (8)	0.0214 (9)	0.0000 (7)	0.0040 (7)	-0.0003 (6)
C2	0.0211 (12)	0.0125 (9)	0.0212 (11)	0.0009 (8)	0.0067 (9)	-0.0008 (7)
C3	0.0172 (11)	0.0165 (9)	0.0196 (10)	0.0001 (8)	0.0049 (8)	-0.0009 (8)
C4	0.0178 (11)	0.0174 (9)	0.0191 (10)	0.0025 (8)	0.0024 (9)	0.0005 (8)
C5	0.0164 (11)	0.0167 (9)	0.0184 (10)	0.0008 (8)	0.0045 (8)	-0.0003 (7)
C6	0.0211 (12)	0.0164 (9)	0.0234 (11)	0.0011 (8)	0.0041 (9)	0.0013 (8)
C7	0.0254 (13)	0.0148 (10)	0.0279 (12)	-0.0038 (8)	0.0070 (10)	-0.0005 (8)
C8	0.0175 (12)	0.0234 (11)	0.0246 (12)	-0.0038 (8)	0.0025 (9)	-0.0037 (8)
C9	0.0155 (11)	0.0217 (10)	0.0225 (11)	0.0008 (8)	0.0015 (9)	-0.0004 (8)
C10	0.0186 (11)	0.0166 (9)	0.0182 (10)	0.0004 (8)	0.0049 (8)	-0.0008 (8)
C11	0.0165 (11)	0.0168 (9)	0.0269 (12)	0.0009 (8)	0.0032 (9)	-0.0008 (8)

C12	0.0157 (12)	0.0192 (10)	0.0265 (12)	0.0001 (8)	0.0032 (9)	-0.0015 (8)
C13	0.0167 (12)	0.0237 (11)	0.0208 (11)	-0.0032 (8)	0.0017 (9)	-0.0013 (8)
C14	0.0175 (12)	0.0205 (10)	0.0223 (11)	-0.0021 (8)	0.0021 (9)	-0.0019 (8)
C15	0.0223 (13)	0.0213 (10)	0.0291 (12)	-0.0027 (8)	0.0019 (10)	0.0017 (9)
C16	0.0211 (12)	0.0295 (12)	0.0344 (13)	0.0041 (9)	0.0028 (10)	0.0028 (10)
C17	0.0344 (14)	0.0223 (10)	0.0229 (12)	0.0068 (9)	0.0020 (10)	-0.0010 (9)
C18	0.0370 (15)	0.0223 (11)	0.0349 (14)	-0.0085 (10)	0.0029 (11)	-0.0062 (9)
C19	0.0223 (12)	0.0291 (12)	0.0331 (13)	-0.0069 (9)	0.0048 (10)	-0.0069 (10)
Geometric p	oarameters (Å, °)					
Cl1—C2		1.7448 (18)	C14–	C15	1.38	39 (3)
O1—C13		1.215 (3)	C14-	C19	1.39	94 (3)
O2—C11		1.438 (3)	C15-	C16	1.38	32 (3)
O2—C12		1.426 (2)	C16–	C17	1.38	34 (3)
N1—C2		1.298 (3)	C17–	C18	1.3	78 (3)
N1-C10		1.375 (2)	C18–	C19	1.38	35 (3)
C2—C3		1.421 (3)	C4—	H4	0.92	300
C3—C4		1.369 (3)	С6—	H6	0.93	300
C3—C11		1.480 (3)	С7—	H7	0.93	300
C4—C5		1.408 (3)	C8—	H8	0.93	300
C5—C6		1.420 (3)	С9—	H9	0.92	300
C5-C10		1.414 (3)	C11–	-H11	0.98	300
C6—C7		1.363 (3)	C12-	-H12	0.98	300
C7—C8		1.406 (3)	C15–	-H15	0.9.	300
C8—C9		1.369 (3)	C16–	–H16	0.93	300
C9—C10		1.412 (3)	C17-	-H17	0.9	300
C11 - C12		1.4/4 (3)	C18-	-H18	0.9.	300
C12-C13		1.507(3)	019-	-619	0.9.	500
		1.492 (3)	015	1110	0.5	
		3.646 (2)	C15	·H12	2.7.	300
CII····C/		3.550 (2)	C16	·H6 ^m	3.00	J00
Cl1C81		3.633 (2)	C17··	·H6 ^{1x}	3.03	500
Cl1…H11		2.9000	C17··	·H4 ^{1x}	2.99	900
Cl1…H9 ⁱⁱ		3.1100	C17··	·H12 ^{viii}	3.00	500
Cl1…H11 ⁱⁱⁱ		3.1300	C18…	·H4 ^{ix}	3.0	100
01…02		2.787 (2)	C18…	·H12 ^{viii}	2.99	900
O1…C2 ⁱⁱ		3.213 (3)	H4…(02	2.50	500
O1…C3 ⁱⁱ		3.343 (3)	H4…0	C17 ^x	2.99	900
02…01		2.787 (2)	H4…(C18 ^x	3.0	100
01…H19		2.5300	H4…]	H6	2.53	300
O1…H12 ⁱⁱ		2.7100	H4…(C7 ^v	2.9	100
O1…H15 ⁱⁱ		2.5800	H4…($C8^{v}$	3.04	400
O2…H4		2.5600	Н6…(C16 ^x	3.00	000
O2…H16 ⁱⁱ		2.9000	Н6…(C17 ^x	3.05	500
$N1 \cdots H8^{iv}$		2.6700	H6…]	H4	2.53	300

N1…H11 ⁱⁱⁱ	2.5600	H7···H9 ^{xi}	2.5700
C2···C9 ⁱ	3.563 (3)	H7···C4 ^{vi}	3.0600
C2…O1 ⁱⁱⁱ	3.213 (3)	H8…N1 ^{xi}	2.6700
C3···C9 ⁱ	3.579 (3)	H8····C4 ^{vi}	3.0400
C3…O1 ⁱⁱⁱ	3.343 (3)	H9…H7 ^{iv}	2.5700
$C4 \cdots C7^{v}$	3.454 (3)	H9…Cl1 ⁱⁱⁱ	3.1100
C4···C8 ^v	3.439 (3)	H11…Cl1	2.9000
C7…Cl1 ⁱ	3.550 (2)	H11····Cl1 ⁱⁱ	3.1300
C7…C4 ^{vi}	3.454 (3)	H11…N1 ⁱⁱ	2.5600
C8…Cl1 ⁱ	3.633 (2)	H11····C2 ⁱⁱ	3.0600
C8····C4 ^{vi}	3.439 (3)	H12…C15	2.7300
C9···C2 ⁱ	3.563 (3)	H12…H15	2.1400
C9···C3 ⁱ	3.579 (3)	H12····C17 ^{vii}	3.0600
C12···C17 ^{vii}	3.396 (3)	H12···C18 ^{vii}	2.9900
C13····C17 ^{vii}	3.273 (3)	H12···O1 ⁱⁱⁱ	2.7100
C15…Cl1	3.646 (2)	H15…C12	2.5700
C17····C13 ^{viii}	3.273 (3)	H15…H12	2.1400
C17···C12 ^{viii}	3.396 (3)	H15…O1 ⁱⁱⁱ	2.5800
C2…H11 ⁱⁱⁱ	3.0600	H16····O2 ⁱⁱⁱ	2.9000
$C4 \cdots H7^{v}$	3.0600	H16…H18 ^{xii}	2.3700
C4····H8 ^v	3.0400	H17····C13 ^{viii}	2.9300
C7…H4 ^{vi}	2.9100	H17…H19 ^{xii}	2.5000
C8…H4 ^{vi}	3.0400	H18…H16 ^{xiii}	2.3700
С12…Н15	2.5700	H19…O1	2.5300
C13····H17 ^{vii}	2.9300	H19…H17 ^{xiii}	2.5000
C11—O2—C12	61.96 (13)	C14—C15—C16	120.07 (19)
C2—N1—C10	117.24 (17)	C15—C16—C17	120.3 (2)
Cl1—C2—N1	116.30 (15)	C16—C17—C18	120.22 (19)
Cl1—C2—C3	117.61 (15)	C17—C18—C19	119.69 (19)
N1—C2—C3	126.07 (17)	C14—C19—C18	120.5 (2)
C2—C3—C4	116.33 (18)	C3—C4—H4	120.00
C2—C3—C11	121.06 (16)	C5—C4—H4	120.00
C4—C3—C11	122.60 (18)	С5—С6—Н6	120.00
C3—C4—C5	120.66 (18)	С7—С6—Н6	120.00
C4—C5—C6	123.21 (18)	С6—С7—Н7	119.00
C4—C5—C10	117.73 (17)	С8—С7—Н7	120.00
C6—C5—C10	119.07 (18)	С7—С8—Н8	120.00
C5—C6—C7	119.97 (19)	С9—С8—Н8	120.00
C6—C7—C8	120.99 (18)	С8—С9—Н9	120.00
С7—С8—С9	120.38 (19)	С10—С9—Н9	120.00
C8—C9—C10	120.08 (18)	O2—C11—H11	116.00
N1—C10—C5	121.95 (18)	C3—C11—H11	116.00
N1—C10—C9	118.54 (17)	C12—C11—H11	116.00
C5-C10-C9	119.50 (17)	O2—C12—H12	117.00

O2—C11—C3	116.49 (16)	C11—C12—H12	117.00
O2—C11—C12	58.62 (13)	C13—C12—H12	117.00
C3—C11—C12	120.10 (18)	C14—C15—H15	120.00
O2—C12—C11	59.42 (13)	C16—C15—H15	120.00
O2—C12—C13	116.57 (17)	C15—C16—H16	120.00
C11—C12—C13	117.31 (18)	C17—C16—H16	120.00
O1-C13-C12	121.09 (18)	С16—С17—Н17	120.00
O1-C13-C14	122.38 (18)	C18—C17—H17	120.00
C12—C13—C14	116.46 (18)	C17—C18—H18	120.00
C13—C14—C15	122.28 (18)	C19—C18—H18	120.00
C13—C14—C19	118.46 (19)	C14—C19—H19	120.00
C15—C14—C19	119.19 (18)	С18—С19—Н19	120.00
C12—O2—C11—C3	110.6 (2)	C5—C6—C7—C8	0.5 (3)
C11—O2—C12—C13	107.5 (2)	C6—C7—C8—C9	0.1 (3)
C10—N1—C2—Cl1	179.30 (15)	C7—C8—C9—C10	-0.9 (3)
C10—N1—C2—C3	1.0 (3)	C8—C9—C10—N1	-179.05 (19)
C2—N1—C10—C5	-1.3 (3)	C8—C9—C10—C5	1.0 (3)
C2-N1-C10-C9	178.74 (19)	O2-C11-C12-C13	-106.2 (2)
Cl1—C2—C3—C4	-177.93 (15)	C3-C11-C12-O2	-104.50 (19)
Cl1—C2—C3—C11	1.5 (3)	C3-C11-C12-C13	149.27 (18)
N1—C2—C3—C4	0.4 (3)	O2-C12-C13-O1	8.4 (3)
N1—C2—C3—C11	179.8 (2)	O2—C12—C13—C14	-168.62 (18)
C2—C3—C4—C5	-1.5 (3)	C11—C12—C13—O1	75.9 (3)
C11—C3—C4—C5	179.12 (19)	C11—C12—C13—C14	-101.1 (2)
C2—C3—C11—O2	-162.68 (18)	O1-C13-C14-C15	173.1 (2)
C2—C3—C11—C12	-95.2 (2)	O1-C13-C14-C19	-10.0 (3)
C4—C3—C11—O2	16.7 (3)	C12-C13-C14-C15	-10.0 (3)
C4—C3—C11—C12	84.2 (3)	C12—C13—C14—C19	166.9 (2)
C3—C4—C5—C6	-178.3 (2)	C13-C14-C15-C16	178.3 (2)
C3—C4—C5—C10	1.2 (3)	C19—C14—C15—C16	1.4 (3)
C4—C5—C6—C7	179.0 (2)	C13—C14—C19—C18	-177.0 (2)
C10—C5—C6—C7	-0.4 (3)	C15-C14-C19-C18	0.0 (3)
C4—C5—C10—N1	0.3 (3)	C14-C15-C16-C17	-1.7 (3)
C4—C5—C10—C9	-179.75 (19)	C15—C16—C17—C18	0.5 (3)
C6—C5—C10—N1	179.68 (19)	C16—C17—C18—C19	0.9 (3)
C6—C5—C10—C9	-0.3 (3)	C17—C18—C19—C14	-1.2 (4)
	1/0 1/0	1 1/0 1/0 / 1/0 1/0 1/0	() 1/0 .0/2

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1/2, -*y*+1/2, *z*; (iii) *x*+1/2, -*y*+1/2, *z*; (iv) -*x*+3/2, *y*-1/2, -*z*+1; (v) *x*-1/2, -*y*+3/2, *z*; (vi) *x*+1/2, -*y*+3/2, *z*; (vii) -*x*+1/2, *y*+1/2, -*z*; (viii) -*x*+1/2, *y*-1/2, -*z*; (ix) *x*, *y*-1, *z*; (x) *x*, *y*+1, *z*; (xi) -*x*+3/2, *y*+1/2, -*z*+1; (xii) *x*+1/2, -*y*-1/2, *z*; (xiii) *x*-1/2, -*y*-1/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A		
C4—H4…O2	0.9300	2.5600	2.884 (3)	101.00		
C11—H11···N1 ⁱⁱ	0.9800	2.5600	3.510 (3)	164.00		
C15—H15···O1 ⁱⁱⁱ	0.9300	2.5800	3.494 (3)	170.00		
Symmetry codes: (ii) $x-1/2$, $-y+1/2$, z ; (iii) $x+1/2$, $-y+1/2$, z .						

